top of page

It's Electric! Thunderdruck Climate Vehicle

"Experts tell us that cars will change more in the next decade than they have in the past century. And that’s probably just as well, since cars account for a significant proportion of global carbon dioxide (C0₂) emissions" Climate Vehicles creator.

One of the vehicles we have designed is similar to the "Thunderdruck" which is an electric car with a future design and commitment to better performance both on and off the road. Flexible full function, advanced, 180 kWh battery capacity, can run 400 miles and the e-solar panel also has a ‘bad wing’ design so that the car’s battery can be charged while still stationary.

And according to The Conservation folks, Dan Lewis, Claude Chibelushi and Debi Roberts of Staffordshire University combine their expertise in industrial design, cognitive computing and transport engineering to peer into the future, and picture the car in 2030.

They predict that interiors will be much more flexible, allowing customisation of colour, light, privacy and layout at the touch of a button – an exciting prospect for passengers. Beyond aesthetics, there are three major changes these experts expect will make cars more efficient and help curb pollution.

  • Electrification: Cars powered by electricity offer an alternative to polluting fossil fuels. Fully electric vehicles only make up 2% of the global market right now. But their price is predicted to drop below that of petrol cars by the mid-2020s, so fully electric vehicles should be a viable choice for a wide range of drivers by 2030.

  • Automation: by 2030, the standard car will evolve from merely assisting the driver to taking full control of all aspects of driving, in most conditions. Rural drivers will probably still own their cars, but cities may move away from car ownership to the use of on-demand autonomous vehicles, which should reduce the number of cars on the roads.

  • Connectivity: will minimise fuel consumption (and improve traffic flow) by allowing cars to synchronise their movement. This will be possible thanks to the ever-growing internet of things. We will see sensors designed to recognise and communicate with upgraded road signs, markings, networks of cameras, pedestrians and other vehicles.

The electric car revolution is coming

According to Jack Barkenbus, a researcher with the Climate Change Research Network within Vanderbilt University’s Institute for Energy and Environment, the global shift from petroleum-fueled vehicles to electric ones will come sooner rather than later. A key element of an EV’s price is the cost of its batteries, but industry analysts now suggest that within five years it will be cheaper to buy an electric car than a petrol-powered one.

Read more: The electric vehicle revolution will come from China, not the US

China already makes more than half of the world’s EV batteries, and may go on to produce as much as 70% by 2021, even as the demand for electric car batteries grows.

Indeed, most of this demand is coming from within China – the world’s largest automobile market. As Western countries approach peak car ownership, there are still hundreds of millions of Chinese families that don’t own a car at all – much less two or more. And many of them are buying EVs.

In 2018, Chinese sales topped 1.1m cars – that’s more than 55% of all EVs sold in the world, and more than three times as many as Chinese customers had bought two years earlier (for comparison, EV sales in the US that year reached just 358,000).

Barkenbus says: “The EV revolution is coming, but it won’t be driven by the US. Instead, China will be at the forefront.”

Our cities will change as radically as our cars

Most of the world’s population lives in cities, which account for 75% of global energy use and 76% of C0₂ emissions. As such, researchers have pointed to a growing focus on the role cities can play in reducing emissions and helping humanity adapt to the impacts of climate change.

According to University of Sheffield academics Martin Mayfield and Giuliano Punzo, introducing a networked system of electric, autonomous vehicles at a city level would ease congestion, thereby reducing pollution and minimising the time people spend on the road. It would also radically change the face of cities in the future.

The average car spends around 90% of its life parked. A shift away from privately owned vehicles towards a service – owned and run by public or private ventures – is a smart and efficient solution that’s going to revolutionise the way traffic flows through cities. But it could also have profound consequences for existing transport systems such as trains, metros and bus services.

Congestion is often caused by too many drivers all trying to take the most direct or convenient route at the same time. Only drivers who take the route early will benefit, while the rest will get caught in traffic – mathematicians call this “the price of anarchy”.

Best avoided.Antonio DiCaterina/Unsplash., FAL

Working as a system, driverless cars will be able to distribute themselves across a range of routes to prevent traffic jams and move through the city more efficiently. This kind of system should offer further benefits over time, provided useful data collected by autonomous cars is delivered to local or city authorities, that can then work to improve roads as needed.